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Abstnct-The reftectionless stress intensity factor is determined for an edge crack in a semi-infinite solid,
subject to various applied loadings. By comparing its value with that of the static stress intensity factor, the
simple KIa crack arrest procedure is shown to be conservative for this particular situation, in that it
over-predicts the crack arrest length. The results are discussed in relation to the water-cooled reactor
pressure vessel LOCA problem, which is currently analyzed via the ASME Section XI Code provisions,
which are based on the KIa approach,

INTRODUCTION
The current ASME Code procedure [I] for predicting crack arrest in nuclear pressure vessels is
based on a static linear elastic fracture mechanics (LEFM) analysis: the arrest value KIa of the
crack tip static stress intensity factor KP is assumed to be a material property and is referred
to as the arrest toughness. It is important to appreciate that the KIa approach is, in general, not
strictly accurate. Only in the highly idealised case where a semi-infinite crack propagates in an
unbounded solid stressed by time-independent loads is the KIa approach exact [2]; the approach
is not even exact with this geometrical configuration when the solid is subject to time
independent applied displacements [3]. Consequently, in general, the usefulness of the KIa
procedure depends on its ability to make arrest predictions that are sufficiently accurate for
practical purposes, although in many cases it is probably sufficient to demonstrate that the
approach is conservative.

There are no wave reflection effects when a semi-infinite crack propagates in an unbounded
solid and this problem can be investigated with the aid of the reflectionless stress intensity
factor K" (2, 4, 5) \vhich multiplied by an appropriate velocity term that equals unity when the
crack tip velocity v~O, gives the dynamic stress intensity factor KfYN(v). Propagation is
governed by the relation KfYN(v) = KID(v) where KID(v) is the dynamic fracture toughness,
which is presumed to be a monotonically increasing function of v. Arrest occurs when
KfYN(v ~O) = KID(v ~O) = KID or when K1 = KID, and it has been demonstrated[l] that when
a semi-infinite crack propagates in an unbounded solid stressed by time-independent loads, then
the value of K1 at arrest (i.e. KID) is equal to the magnitude of the stress intensity factor as
determined by a static LEFM analysis; in this case KIa = KID'

If wave reflections are neglected, the same approach can be used to study the propagation
and arrest of an edge crack in a semi-infinite solid subject to a variety of loadings. This general
model is appropriate for discussing the propagation and arrest of a crack in the pressure vessel
of a water-cooled reactor when this is subjected to a hypothetical loss of coolant accident
(LOCA). In such an accident, the emergency core cooling system (ECCS) injects water into the
vessel, whereupon thermal stresses might enable a pre-existing defect at the vessel inner
surface to propagate into the vessel wall. In this case, primarily because there are no free
surfaces parallel to the crack propagation direction, one can develop arguments [6,7] to show
that it is reasonable to neglect wave reflection effects; the problem is therefore appropriate for
investigation via the reflectionless stress intensity factor K1 approach. Thus if the simple KIa
approach is to be practically useful in this type of situation, it is essential to demonstrate that
the arrest predictions using the two approaches are in reasonable accord, or better still, that the
KIa approach predictions are conservative.

It is against this general background that the present paper analyzes the propagation and
arrest of an edge crack in a semi-infinite solid; the study extends and generalizes Melville's
earlier investigation[5].
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2. GENERAL THEORETICAL ANALYSIS

This section considers the Mode I propagation of an edge crack in a semi-infinite solid; the
initial crack length is ao and the objective is to examine the situation when the crack propagates
to a distance (ao +E) into the solid, i.e. the crack propagation distances is E (Fig. la). Assuming
that the applied loadings generate a tensile stress p(ao, x) ahead of the initial crack tip, the
reflectionless stress intensity factor K1, i.e. the product of KfT and a "correction" factor g, is
given[2, 4, 5J by the expression

K1=gKfT= 11[fx
=a

o+f po(ao, x)dx l
V7T x=aO v(ao+E)-iJ

(1)

with x being measured from the crack mouth. It is important to appreciate that the derivation of
relation (1) is based on an exact dynamic analysis, even though K' is obtained by a purely
static analysis.

The crack tip stress intensification factor K fT for the extension Eis the same as that for an
edge crack of length (ao +E) when pressures p(ao, x) are applied to its faces over a distance E

from its tip. Since this intensification factor exceeds that for a central crack of length 2(ao +E)
in an infinite solid, when pressures p(ao, x) are applied to its faces over a distance E from both
tips (Fig. Ib), it immediately follows that

(2)
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Fig. Ha). The Mode 1 propagation of an edge crack of length 00 in a semi-infinite solid. (b) The Mode 1
propagation of an internal crack of length 200 in an infinite solid.
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Relations (1) and (2) give
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(3)

and consequently KfT is greater than K1 provided p(ao, x) is positive.
The crack arrests when the reflectionless stress intensity factor K1( == gKfT) is equal to KIDo

whereupon it immediately follows that if KIa is the arrest value of KfT, then KIa> KID and the
correlation factor g < I; consequently the KIa approach is conservative in that it overpredicts
the crack length at arrest. This conclusion generalizes that due to Melville [5] who considered
the special case where the stress, in the crack's absence, is a linearly decreasing function of
distance from the surface. It is valid whenever the applied loadings generate a tensile stress
ahead of the original crack and is also applicable when a pressure is applied to the faces of the
initial crack provided, of course, that they produce a tensile stress ahead of the crack.

As already indicated, Meville [5] has provided an example which illustrates this conclusion
when external loads are applied to the solid; the next section provides simple examples where a
pressure is applied to the faces of the initial crack.

3. EXAMPLES ILLUSTRATING THAT K1.>KID WHEN A PRESSURE IS
APPLIED TO THE CRACK FACES

As indicated in the previous section, in demonstrating that KIa> KID when a pressure is
applied to the faces of an edge crack in a semi-infinite solid, it is sufficient to demonstrate the
condition for an internal crack in an infinite solid, with symmetric propagation occurring at each
tip. This section therefore considers semi-infinite solid models but uses infinite solid analyses;
the examples are chosen so that analytical solutions are readily attained, and, furthermore, they
are such that arrest is possible, Le. KfT decreases as the crack extends.

As the first example, suppose that a semi·infinite solid contains an edge crack of initial
length ao and concentrated forces P are applied at the crack mouth (Fig. 2). For this particular
loading system, the tensile stress p(ao, x) ahead of the initial crack tip is

(4)

where x is measured from the crack mouth, whereupon eqns (1) and (4) give the reflectionless

p
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Fig. 2. The Mode I propagation of an edge crack in a semi-infinite solid due to the effect of applied forces P
at the crack mouth.
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stress intensity factor K1 for a crack extension E as

4P 1'"'2 dO
K1 = """"'312":-,-;--/ [ ] I(

1T Vao 0 1+:0 sin2
() 'J 1+2~0 sin2

() )

(5)

Le. K' is given in terms of an elliptic integral of the third kind. Furthermore, relation (4) gives
the crack tip stress intensification factor KfT for an extension E as

(6)

Assuming that the crack arrests when the reftectionless stress intensity factor KK=gKfT) is
equal to KID> relations (5) and (6) immediately show that the arrest value of KF, i.e. KIa and
the correction factor g == K fT are given by the expression

(7)

Figures 3 and 4 show respectively the variations of (KIa!KID) and g with crack jump length. For
small crack jumps

while for large crack jumps

KIa = 1+...!..
KID 8ao

Eg=l-
8ao

(8)

(9)

The important conclusion for this particular loading pattern is that KIa increases and the
correction factor g decreases as the crack jump length increases, i.e. KIa always exceeds KID'

Now consider the case where the semi-infinite solid contains an edge crack of initial length
ao and concentrated forces P are applied to the crack faces at points that are at a distance
b( < ao) from the crack mouth (Fig. 5). For this loading system

(10)
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Fig. 3. (K•.JKID) as a function of crack-jump length (doo)for the model in Fig. 2.
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Fig. 4. The correction factor g as a function of crack-jump length (flao) for the model in Fig. 2.
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Fig. 5. The Mode I propagation of an edge crack in a semi-infinite solid due to the elect of applied forces P
at the points shown.

where x is measured from the crack mouth. Relation (1) shows that the reflectionless stress
intensity factor K, for a crack extension E is

Furthermore, relation (10) gives the crack tip stress intensification KF for an extension E as

(12)

whereupon relations (11) and (12) show that the arrest value of KF. i.e. KIa, and the correction
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factor g==K1IK~T are given by the expression

(13)

For small crack jumps, relation (13) gives the same results as are expressed in relation (8).
Finally consider the case where the faces of the edge crack, again of initial length ao, are

subject to the uniform pressure PN (Fig. 6). For this loading system

(14)

where x is measured from the crack mouth. Relation (1) shows that the reflectionless stress
intensity factor K1 for a crack extension E is

(15)

and relation (14) gives the crack tip stress intensification factor K~T, again for an extension E,

as

(16)

(17)

whereupon relations (15) and (16) show that the arrest value of K1T, i.e. KIa, and the correction
factor g == K1IK~T are given by the expression

Yr ,r~..JJl+~sin201 dO
AID _ I ao lJ No_ L ao J
KIa =g =Vao +E ° 'I +~ sin2 0

V 2ao

• -1 [ ao ]sm -+-.ao E

For small crack jumps, relation (17) again gives the same results as are expressed in relation (8).

:I=t=t~~i===-:- -----=====-
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Fig. 6. The Mode 1propagation of an edge crack due to the effect of a uniform pressure PH applied to the
faces of the crack when it is in its initial position.
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4. DISCUSSION

The general theory in Section 2, illustrated by the specific examples in Section 3, shows both
for the case where a pressure is applied to the crack faces and also for externally applied loads,
that KIa/KID exceeds unity at arrest providing the loadings generate tensile stresses ahead of an
edge crack in a semi-infinite solid. This implies that the simple KIa approach overestimates the
crack length at arrest, Le. the KIa approach is conservative from a safety viewpoint. This
conclusion is applicable for all pressure and tensile stress distributions and generalizes the
conclusion of Melville [5], who considered the specific case where the tensile stress, in the
crack's absence, decreased linearly with distance from the solid's surface. In considering this
conclusion in the context of the LOCA problem, it should be noted that the tensile stress in this
case is generated thermally, while KID increases with depth into the pressure vessel wall. If, as
seems appropriate, this situation is simulated by a model in which a tensile stress is generated
by time-independent loads, the KIa approach is clearly conservative with regard to the
prediction of the crack length at arrest.

It must be emphasized that the conclusion is limited in its applicability, since experimental
test results, for example those obtained by Kalthoff[8], generally show a decrease of KIa/KID
with crack-jump length. There are three possible explanations for this apparent difference: (a)
the presence of free surfaces parallel to the crack may be having a significant effect on the
interplay between KrT and K1; (b) the loading in laboratory specimens is closer to being
displacement rather than load controlled; (c) reflected waves may be reaching the crack tip and
be affecting the arrest process. Kalthoff's experimental results [8] clearly show that wave
reflections playa greater role in specimens (e.g. rectangular double cantilever beam) when free
surfaces are close to the propagating crack, than in specimens (e.g. single edged-notched) where
this is not the case. However, the effects of such surfaces in producing wave reflections is
beyond the scope of this paper, whose main objective has been to focus on the conservatism of
the simple KIa approach in situations where wave reflections are unlikely to have a major effect
on the processes of dynamic crack propagation and arrest.

5. CONCLUSIONS

When an edge crack propagates in a semi-infinite solid due to applied loads or to pressures
applied to the crack faces, the simple KIa approach is conservative in that it over-predicts the
crack length at arrest, provided the loads produce a tensile stress ahead of the original crack.
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